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The growth rate and turbulent structure of the compressible, plane shear layer are 
investigated experimentally in a novel facility. In  this facility, it is possible to flow 
similar or dissimilar gases of different densities and to select different Mach numbers 
for each stream. Ten combinations of gases and Mach numbers are studied in which 
the free-stream Mach numbers range from 0.2 to 4. Schlieren photography of 20-ns 
exposure time reveals very low spreading rates and large-scale structures. The 
growth of the turbulent region is defined by means of Pitot-pressure profiles 
measured at several streamwise locations. A compressibility-effect parameter is 
defined that correlates and unifies the experimental results. It is the Mach number 
in a coordinate system convecting with the velocity of the dominant waves and 
structures of the shear layer, called here the convective Mach number. It happens to 
have nearly the same value for each stream. In  the current experiments, i t  ranges 
from 0 to 1.9. The correlations of the growth rate with convective Mach number fall 
approximately onto one curve when the growth rate is normalized by its 
incompressible value at the same velocity and density ratios. The normalized growth 
rate, which is unity for incompressible flow, decreases rapidly with increasing 
convective Mach number, reaching an asymptotic vaue of about 0.2 for supersonic 
convective Mach numbers. 

1. Introduction 
As a result of today’s increasing importance of supersonic combustion, there has 

recently been renewed interest in the compressible turbulent shear layer. Com- 
pressibility plays a crucial role in the stability and mixing of shear layers, its effects 
being capable of producing order-of-magnitude changes compared with incom- 
pressible flow. It is essential that these effects be understood in a coherent and 
universal way. The limited amount of experimental data in two-stream compressible 
turbulent shear layers indicates the need for extensive experimental investigations 
where parametric studies of such flows can be carried out. 

It has been observed that turbulent shear layers with one stream supersonic and 
one stream at rest (e.g. at the edges of jets) spread more slowly than incompressible 
shear layers. Birch & Eggers (1973) have compiled a survey of such experiments. 
Although some inconsistencies exist among the various investigators, there is a 
definite trend of decreasing growth rate with increasing free-stream Mach number. In 
most one-stream experiments, increasing Mach number is accompanied by decreasing 
temperature and thus increasing density of the jet. The thinning of the shear layer 
with increasing Mach number was thus attributed by many investigators to the 
density ratio between the jet and the external gas. This led to models incorporating 
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Howarth-Dorodnitsyn-type transformations, density-dependent eddy viscosities, 
etc. 

Whether density effects alone could account for the differences in spreading rate 
was one of the questions that motivated the experiment of Brown & Roshko (1974), 
who built an apparatus in which incompressible shear layers with large density 
differences could be studied by using diff'erent gas combinations, like helium and 
nitrogen, a t  low speeds. It was found that, although there is some effect of density 
on the spreading rate, it is very much smaller than what is observed in the supersonic 
case. It was therefore concluded that compressibility, per se, affects in a fundamental 
way the development of the supersonic shear layer. 

Little information about turbulent growth rates can be extracted from the scarce 
two-stream experiments in the literature, primarily because most measurements 
were taken in the near field of a flow with a strong wake component (Bailey & Kuethe 
1957). Ortwerth & Shine (1977) conducted an interesting heterogeneous flow 
experiment, mentioned later in this section, but did not provide clear growth-rate 
data. More recently, Chinzei et al. (1986) generated turbulent shear layers with air in 
both streams, where one Mach number is Supersonic and the other ranges from 
subsonic to supersonic. Unfortunately, their growth-rate measurements are hard to 
interpret quantitatively because they are based on an uncommon definition of shear- 
layer thickness and are correlated ignoring density effects. Other two-stream 
experiments concentrate on transition (Khackleford et al. 1973 ; Demetriades & 
Brower 1982) and ejector performance (Dutton, Mikkelsen & Aiddy 1982). 

Perhaps the most elementary feature that distinguishes a supersonic flow from a 
subsonic one is that in the supersonic case a disturbance does not propagate 
upstream and remains confined within a Mach cone, while in the subsonic case a 
disturbance is felt throughout the flow field. Given the limited region of influence of 
a supersonic disturbance, we might expect that  a supersonic shear layer is more 
stable, therefore mixes more slowly, than a subsonic one. In  converting this abstract 
notion to a more concrete one, the question arises : in what frame of reference do we 
measure the compressibility of the shear layer Z In the case of the one-stream shear 
layer, we might choose the laboratory frame of reference. In  the case of the two- 
stream shear layer, however, this becomes a very poor choice. As an extreme 
example, consider a shear layer comprising two supersonic streams with nearly equal 
velocities. Clearly, that shear layer should not be described as intrinsically supersonic 
when the velocity difference between the free streams is low subsonic. The problem 
of finding the proper frame of reference becomes even more complex when the gases 
have different speeds of sound. Nevertheless, it is essential that a sensible choice for 
a frame of reference be made in which the intrinsic compressibility of the flow is 
properly characterized. 

In two-stream compressible shear layers, the effects of compressibility will be 
coupled not only with the effects of density ratio, but also with those of velocity 
ratio. The spreading rate of the incompressible turbulent shear layer has been found 
to depend largely on these two parameters, most importantly on velocity ratio. To 
understand and quantify the effects of compressibility, a scheme must be invented 
by means of which compressibility effects are somehow uncoupled from those of the 
other relevant parameters. Useful comparisons can only be made when one 
parameter is varied at a time, something that is lacking in the correlations performed 
by previous experimental investigators. 

Subsonic turbulent shear layers contain large, so-called ' coherent ' structures 
reminiscent of those in the early stages of instability. It was realized that the growth 
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of the shear layer is governed primarily by its instability a t  these large scales. There 
is already visual evidence that large-scale structures exist in supersonic shear layers. 
This evidence comes from the experiments of Ortwerth & Shine (1977), where a 
stream of helium at M = 3 mixes with a stream of nitrogen also at M = 3, and of 
Oertel (1979) at the edges of supersonic jets. Not much is presently known about the 
nature of these structures nor to what extent they dominate the mixing process in 
the compressible case. If their role is important, then the question as to whether they 
are two- or three-dimensional, spanwise-coherent or oblique, becomes important and 
is still unresolved. 

The objective of the present study is to investigate turbulent two-stream shear 
layers between similar or dissimilar gases at a variety of free stream Mach numbers, 
ranging from subsonic to high supersonic. In that way, compressibility effects, 
together with those of density and velocity ratios, are studied. The general 
configuration of the shear layer and the variables involved are summarized in figure 
1. The current investigation focuses on the measurement of turbulent growth rates 
from Pitot-pressure surveys. Such measurements are performed at 10 Mach 
number-gas combinations with varying degrees of compressibility, so that 
statistically meaningful trends are established. Considerable effort is made to 
correlate and unify the results, using ideas stated earlier, so that the net effect of 
compressibility can be abstracted as clearly as possible. Additionally, instantaneous 
flow visualization shows the remarkably small spreading rates and indicates the 
existence of large-scale structures. 

2. Apparatus and instrumentation 
It was our intention to create and study shear layers between gases of variable 

density, velocity and Mach number. A new facility that meets our objectives was 
designed and built. It is shown schematically on figure 2.  Basically, it is a two- 
stream, blow-down supersonic wind tunnel with two independent supply sides. Each 
supply side is connected to a manifold of gas bottles initially at 2000 psi. Large-flow- 
rate pressure regulators (Grove 202G) reduce the gas pressure to a range from 15 to 
100 psia. Each gas enters the settling chamber by means of a fast-acting solenoid 
valve (ASCO) which starts and stops the flow. The downstream end of the flow 
channel is connected to a low-pressure tank, evacuated by a vacuum pump of large 
displacement (Beach-Russ 325RP). The operation of the facility is intermittent. 

After passing through flow-management devices located on the settling chamber, 
each gas is expanded to its design Mach number by means of a contoured centrebody. 
When placed between the upper and lower test-section walls, the centrebody forms 
two supersonic nozzles. The nozzle contours are calculated by the method of 
characteristics and produce nearly uniform exit conditions. The two gases come into 
contact downstream of the centrebody's trailing edge. The centrebody is replaceable ; 
thus a number of them are used for varying the Mach number-specific heat ratio 
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FIGURE 2 .  Srhematic of flow facility 

combination. The centrebody lengths, from sonic throat to trailing edge, range from 
50 mm to 61 mm. The thickness of the trailing edge is 0.3 mm. 

The test section is 23 mm high (at  the nozzle exit), 57 mm wide and 230 mm long. 
Optical-quality glass windows extend from the nozzle throat to the end of the test 
section. To minimize streamwise pressure gradients, the angles of the upper and 
lower walls are adjustable to within 3". In  all present experiments, the walls were 
set to diverge a t  an angle between 1' and 2". 

A schlieren optical system, shown on figure 3, provides instantaneous flow 
visualization. It is a conventional one, although folded to conserve space, with the 
knife edge parallel to the flow direction. Illumination is provided by a spark source 
of 20-ns duration (Xenon N-787B). The parallel beam entering the test section has 
a diameter of 100 mm. The optical components are stationary but the flow channel 
traverses on rails to allow photography of every part of the test section. 

A small Pitot probe, flattened a t  the inlet, traverses the shear layer a t  any desired 
streamwise location (figure 4). It pivots a t  constant speed around a support located 
downstream of the test section. Its incidence angle to the flow never exceeds 10". The 
temporal and spatial resolutions that it offers are satisfactory for our operation. The 
shear-layer Pitot thickness, Spit, is the width of the Pitot-pressure profile from 5 % to 
95 YO of the difference of the free-stream values. If the profile has a wake-like defect, 
it is split into a top and bottom part a t  the location of the minimum ; Spit is then 
measured from 95 YO of the bottom difference with respect to the minimum, to 95 YO 
of the top difference. These definitions of Spit are illustrated on figure 5. A similar 
definition of thickness, based on the velocity profile, has been used by Spencer & 
Jones (1971). We must point out that  a defect in the Pitot-pressure profile does not 
necessarily imply a wake component in the velocity, but may rather be connected to 
dissipation in the mixing region. 

Twelve static-pressure ports along the test section (6 on the top wall and 6 on the 
bottom wall), as well as total-pressure ports in the settling chamber, are connected 
to pressure transducers (Setra Systems 204) via a Scanivalve system. The outputs of 
the transducers are recorded on a digital oscilloscope (Nicolet 206) and stored on 
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FIGURE 4. Pitot-probe mechanism. 

floppy disc. The total temperatures in the settling chamber are also 
although their values do not vary significantly from room values. A 

recorded, 
series of 

- I  

mechanical pressure gauges, connected to every pressure stage of the facility, help 
monitor the operation and set the regulator pressures. 

The starting and stopping of the flow, photography, probe traversing, and 
recording are done automatically with an Intel 8085 microprocessor connected to a 
system of relays. Each schlieren picture and Pitot-pressure profile is accompanied by 
a record of the static and total pressures that occurred during the run. 
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FIGURE 5 .  Definition of Pitot thickness, S,,,. ( a )  Monotonic Pitot-pressure profile ; ( b )  profile 
with defect. 

3. Run conditions 
Ten combinations of Mach numbers and gases are investigated in the current 

experiments. The static pressure in the test section is of the order of 1 psia, while the 
total pressures vary from 15 to 80 psia, depending primarily on the nozzle-exit Mach 
number. Each run is restricted to 1.5 to 2.0 s duration to conserve the bottled 
gases. 

For each Mach number-gas combination, the total pressures are set such that the 
static pressures of the two free streams a t  the nozzle exits are nearly equal. This is 
done to avoid strong compression and expansion waves emanating from the trailing 
edge. One might expect that if the pressures were exactly matched, the flow would 
be free of waves throughout the test section. Nevertheless, the displacement 
thicknesses of the trailing-edge boundary layers, as well as the thickness of the 
trailing edge itself, make waves unavoidable. Furthermore, the displacement 
thickness of the shear layer produces further waves and complicates the flow field 
significantly . 

To diminish the strength of these waves to a minimum, the total pressures (which 
are directly proportional to their respective nozzle-exit static pressures) are 
manipulated so that the static-pressure distribution along the test section is as 
smooth as possible (as already mentioned, the pressure distribution is monitored by 
the use of pressure taps along the test-section walls). This procedure results in the 
trailing-edge static pressures being close, but not always exactly equal. The pressure- 
setting operation constituted the major difficulty of this experiment because it 
required numerous trials which expended time and gas. Compounding the difficulty 
were the occasionally erratic outputs of the pressure regulators and the adverse 
pressuze gradient discussed below. 

In  two cases, the slow stream is made low subsonic by reducing its total pressure 
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so that it is close to the desired test-section static pressure. The supersonic nozzle 
now acts as a slowly diverging subsonic diffuser (only the lowest-Mach number nozzle 
is used in this fashion). In  these cases, the above-described pressure-setting 
procedure becomes ineffective because the static pressure throughout the subsonic 
stream adjusts itself to the highest one occurring in the supersonic stream. 

The measured static-pressure distribution along the test-section walls surprised us 
a t  first. In all our cases, the static pressure rises rapidly near the trailing edge, then 
levels off in the far field. The pressure rise, relative to the trailing-edge value, is 20 Yo 
to 50% depending on the test case. A typical pressure trace is shown on figure 6 
where we see an additional sharppressure rise a t  the very end of the test section. We 
believe that this is the result of a localized upstream influence of the diffuser section, 
rather than pressure recovery associated with the shear layer itself. 

It came to our knowledge that the phenomenon of pressure recovery in supersonic 
shear layers has been observed before, most dramatically in the supersonic-ejector 
experiments of Dutton et al. (1982). There, it was found that the compressible mixing 
layer in a constant-area duct exhibits a strong pressure recovery, much like in a 
supersonic diffuser. In  a general sense, we may attribute the cause of this pressure 
rise to increased entropy due to mixing. In  supersonic flows, entropy increase leads 
to increase of pressure together with decrease of total pressure and Mach number. An 
equivalent, more mechanical interpretation is that  the pressure rise is a result of the 
shear-layer displacement thickness which, in our cases, appears to act as a solid 
wedge inserted between the two streams. 

The divergence of the test-section walls was instrumental in maintaining a fairly 
constant static pressure for the downstream two-thirds of the test section. The 
growth-rate measurements were performed in the constant-pressure region, so we 
believe that they are largely unaffected by the initial pressure rise. Consequently, the 
Mach number in that region, M, is lower than the ideal nozzle-exit Mach number 
M e .  Using the measured values of the local free stream-Pitot and static pressures, M 
is calculated using the Rayleigh Pitot formula. 

In table 1 that follows, the ideal and measured Mach number-gas combinations are 
listed together with their density ratios p2/p1 and velocity ratios U,/Ul. Subscripts 1 
and 2 indicate the high-speed and low-speed side respectively. MC1 is a com- 
pressibility-effect parameter to be defined later. 

The unit Reynolds number is of the order of 1000Omm-l. At the conditions 
described above, the trailing-edge boundary layers are laminar. Their momentum 
thickness, 8, is calculated by a compressible Thwaites method (Rott & Crabtree 
1952). A typical value for the high-speed 8 is 0.05 mm. The very large supersonic 
velocities render buoyancy effects negligible. Richardson numbers (defined as 
- g A p  cYpit/(pAU), where p is the mean density) are of the order of lo-'. 
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Case Gas 1 M e ,  M ,  Gas 2 M e z  M ,  P J P i  71zI7Ji M,, 
1 x2 1.9 1.6 Ar 4.0 3.3 4.4 0.93 0.07 
2 Ar 4.0 3.4 Ar 2.0 1.8 0.43 0.81 0.26 
3 s, 3.3 3.1 PU’, 1.9 1.7 0.54 0.74 0.33 
4 N2 3.0 2.8 Ar 3 .0 2.6 1.8 0.75 0.39 
5 x, 3.5 3.2 Ar 2.3 2.1 1.2 0.67 0.55 
6 He 2.3 1.7 N, 3.5 3.0 9.2 0.52 0.64 
7 Ar 4.0 3.1 Ar 0.2 0.2 0.24 0.13 0.89 
8 HF: 3.0 2.6 Kz 3 .o 2.8 5.5 0.42 1.05 
9 He 4.0 3.4 Kiz 1.9 1 .fi 2.2 0.29 1.44 

10 He 4 .0  3.1 Ar 0.3 0.3 2.4 0.04 1.81 

TABLE 1 .  Ideal and measured Mach number-gas combinations, with their density and velocity 
ratios 

4. Flow pictures 
Schlieren photographs of eight cases are shown on figure 7 (u-g). Cases 2, 5 and 10 

are omitted because they did not produce good flow visualization. For each case, two 
photographs are shown: the upper one covers the upstream part of the test section 
and the lower one covers the downstream part. They are taken a t  different runs 
under the same flow conditions and overlap slightly. The trailing edge of the 
centrebody is located in the upstream pictures where the waves originate. In all eight 
cases, the shear layer is seen to become turbulent immediately downstream of the 
trailing edge. 

The first striking feature of the pictures is the unusually small spreading rate of the 
shear layers. Although the visual thickness, as i t  appears on the picture, depends to 
some extent on the sensitivity of the schlieren system, it is unquestionable that the 
present shear layers grow a t  a fraction of the usually observed subsonic rate. The 
small growth rate is not necessarily an effect of compressibility alone. Other 
important parameters, namely the velocity and density ratios, also govern the 
growth rate. Later in this report we try to distinguish the compressibility effects from 
those of the other parameters. 

The other striking feature is the presence of large-scale structures. Here the term 
‘large-scale ’ is used with reference to the local thickness of the layer. Such structures 
have been observed in the past in supersonic jets (Oertel 1979) and shear layers 
(Ortwerth & Shine 1977) but in limited flow regimes. The present pictures establish 
with little doubt the existence of large structures in compressible shear layers under 
a large variety of conditions. 

Earlier in our research programme, we inferred visual growth rates from the 
picturcs (Papamoschou & Roshko 1986). The results are subjective and of limited 
accuracy, but agree qualitatively with the present ones. 

5. Growth rates 
Figure 8 shows representative Pitot-pressure surveys. The Pitot-thickness 

measurements are extracted from these profiles by the method outlined in $2.  The 
turbulent growth rate is inferred from a t  least four Pitot-thickness data points in the 
far field, further than 75 mm from the trailing edge. In  that region, x/8, > 1000 for 
all cases. At first thought, this seems to satisfy Bradshaw’s (1966) criterion for fully 
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FIGURE 7 ( a 4 ) .  For caption see next page. 
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FIGUKE 7 .  Schlieren photographs. ( a )  Case 1 ; ( b )  Case 3 ;  (c) Case 4; ( d )  Case 6 ;  ( e )  Case 7 ;  (f) Case 
8; (9 )  Case 9. Mach number-gas combination and velocity and density ratios are given in table 1. 

developed turbulence. It must be kept in mind, however, that  Bradshaw’s results are 
based on one-stream, incompressible shear-layers with uniform density and thus may 
not be as valid for the flows we are considering. It is especially obvious that 
Bradshaw’s criterion will lose its validity when U,/U, is close to unity. Possibly a 
more pertinent parameter to use in that case is xeff/B,, where xeff = x(1 - U 2 / U l ) .  
Excluding Case 1,  which is a wake flow, all other cases satisfy xeff/Bl > 500 in the far 
field. 

Given that the shear layer is fully turbulent, we expect it to grow linearly. With 
that in mind, a straight line is fitted through the downstream Pitot-thickness data 
by the method of least squares. Case 1 is omitted from this procedure because it is 
a wake flow, therefore is not expected to grow linearly. Figure 9 shows the fit to the 
data. The shear layers appear indeed to grow linearly. The standard deviation of the 
data from the least-squares fit, expressed as a growth-rate error, does not exceed 5 %. 
The accuracy of the thickness measurement itself is within +5%. The overall 
accuracy of the growth-rate measurement is thus estimated to be roughly 10 %. 
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Case 5 

In § 7 important growth-rate comparisons are made between the present 
compressible flows and inconzpressible results from the literature. For that, there is 
a need to establish subsonic relations among the thickness measured here, Spit, and 
thicknesses widely used in the literature, namely the visual thickness Svis and the 
vorticity thickness S,,,. For the latter two, it is customary to assume ~ 9 , ~  = 0.58vis, 
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FIGURE 9. Measurement of Pitot thickness with least-squares, straight-line fit only to data 
points downstream of x = 75 mm. 

although this relation has not been confirmed for variable-density flows. For 
hyperbolic-tangent velocity profile, U,/U, = 0.5 (an average value in our flows), and 
uniform density, S,,it/8co = 1.44. Consequently, 8*JSvis = 0.72. We must note that 
experimental velocity profiles tend to deviate from such simple functions, especially 
near the edges of the layer (Spencer & Jones 1971). The ratio Spit/SVis was also 
deduced from the experimental results of Brown & Roshko (1974) and of Konrad 
(1976). In  both works, SVis is measured from flow photographs. Figure 11 of Brown 
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& Roshko shows the Pitot-pressure distribution for a flow with L',/U, = 0.38 and 
p2/p1 = 7 ,  from which we obtain Spit/& = 0.90. From Konrad, using the velocity 
profile for Uz/Ul = 0.38 and p2/p1 = 1 we obtain Spit/Sv, = 0.83. For our purposes, 
therefore, we choose to assume 8pit/Svis = 0.8, roughly the average of the theoretical 
and experimental values. Admittedly, there is some arbitrariness in that decision 
which reflects the scarcity of thickness data and of profile measurements in 
incompressible heterogeneous shear layers. 

6. A compressibility-correlation parameter 
At this point, we search for meaningful correlations between the growth rate and 

the flow parameters. Throughout this section and $ 7  our discussion is restricted to 
two-dimensional disturbances, i.e. disturbances whose direction of propagation is 
identical to that of the mean flow. This is not to imply that the effects of three- 
dimensional (oblique) disturbances may not be noteworthy or that we ignore their 
possible importance. On the contrary, such effects may profoundly alter the 
character of the flow and the analyses that follow. However, our experimental set- 
up did not allow for their detection. We choose to first address the two-dimensional 
problem which is simpler and which introduces concepts that may later be useful for 
understanding the more complex three-dimensional case. A brief discussion of the 
possible effects of three-dimensionalities is presented in 0 8. 

Since the flow is fully turbulent, it is assumed that Reynolds-number effects on the 
growth rate are negligible and that the growth rate for perfect gas can be expressed 
in the form 

where 6' = dS/dx. M ,  does not appear in ( 1 )  because it is redundant: for constant 
static pressure across the layer, M ,  is related to M I  by 

The weakness of correlations along the line of ( 1 )  lies in the fact that  none of the 
' independent ' variables describes the intrinsic compressibility of the flow as 
introduced in 0 1 .  M I  itself is not an intrinsic-compressibility parameter since a flow 
with large M ,  may also have U, z U,, thus making the velocity difference low 
subsonic with respect to either speed of sound. Such is Case 1 of the present 
experiments. 

Below we examine ways to express compressibility in more adequate fashion. In  
particular, we follow and enlarge on the work of Bogdanoff (1983), who introduced 
a reference Mach number M+ in a coordinate system moving with the instability 
waves. 

If the shear layer were reduced to an infinitely thin, wavy interface between the 
two free streams, i.e. a vortex sheet, we could describe its compressibility in a frame 
of reference in which the wave is stationary. In other words, instead of using the 
Mach numbers in the laboratory coordinate system, we use those in a coordinate 
system moving with the wave speed, thus thosc that the wave itself 'feels'. The 
vortex sheet in compressible flow, in the limit of small disturbance, is a simple and 
elegant problem that has been solved analytically (Landau 1944; Pai 1954; Miles 
1958; and others). To test our concept in this simple flow, we performed our own 
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M., 
FIGURE 10. Vortex-sheet amplification rate, normalized by incompressible value, for M ,  = 0, 

y 2 / y I  = 1 ,  and p2/p1 = 0.1,1,10. ( a )  Plotted versus M , ;  ( b )  plotted versus NCI. 

compressible vortex-sheet analysis and computation. It is similar to those found in 
the literature but encompasses a larger range of flow parameters (Papamoschou 
1986). Below we highlight the results so obtained. 

Consider the temporally developing vortex sheet : in a frame moving with the wave 
speed c, the instability grows exponentially in time at a rate ci ( c  = c,+ici is the 
complex phase velocity). The ratio c,/c, may be viewed as the spatial amplification 
rate of the sheet. It is a function of all the variables of the right-hand side of ( 1 ) .  First, 
we want to examine its dependence on M I  for given values of the other parameters. 
Again, M ,  is redundant and given by ( 2 ) .  

In the example shown on figure lO(a), U2/U,  = 0, y2/y1 = 1 and p2/p1 takes the 
values 0.1, 1.0, and 10. To show the effect ofM, most clearly, the amplification rate 
is normalized to be 1 a t  M ,  = 0. It is seen to decline gradually with increasing M I ,  
until it vanishes a t  some critical value of M,. Beyond that value, the vortex sheet is 
stable, a well-known fact from the above-mentioned vortex-sheet analyses. That 
critical value depends on U,/Ul, p2/pl ,  and y2/y1. Here we see its dependence on 
p2/p1 only and notice that it is large. 

Consider the same example, but correlate against the parameter 

We call i t  the convective Mach number since it is the Mach number in a frame of 
reference convecting with the wave speed c,. Therc is a similarly defined M C 2  which, 
like M,,  becomes redundant given the other flow parameters. The growth rate versus 
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FtCCRE 11. Maximum spatial amplification rate, normalized by its incompressible value, for 
finite-thickness shear layer as computed by Gropengiesser (1970). M 2  = 0, p2/p1 = 1, y , /y2  = 1 .  

MC1 is shown on figure 10 (b).  One sees the same trends as in the previous correlations 
versus MI, only now the curves for different density ratios are close to  each other. 
Also, the critical value ofMC1, a t  which the amplification rate vanishes, is considerably 
less sensitive to density ratio than is that of MI. In  a sense, M,, correlates the 
amplification rates more ‘universally ’ than does M I .  Furthermore, our analysis 
shows that M,, is close to Mcl and its critical value lies in the same range as that of 
Mcl .  Similar unifying qualities of MC1 are seen when U,/U, or y2/y1 are varied. Our 
calculation therefore suggests that, for the vortex sheet, compressibility is more 
properly described in a coordinate system moving with the wave, than in a 
stationary one. 

For the finite-thickness shear layer, linearized stability analyses are scarce in the 
literature. Lin (1953) laid the foundation for such analyses, although his is restricted 
to subsonic disturbances, i.e. disturbances with convective Mach number less than 
one. The works of Gropengiesser (1970) and of Blumen, Drazin & Billings (1975) 
extend to  supersonic disturbances. The latter two authors find that the amplification 
rates decline rapidly with increasing Mach number, starting at  subsonic values, but 
never become zero no matter how large the Mach number. One of Gropengiesser’s 
results is plotted on figure 11, showing the maximum spatial amplification rate 
-ai versus M I  in a one-stream ( M ,  = 0) shear layer with uniform density. Notable 
is the flattening of the -ai curve at  high Mach numbers. It is important to note that 
although the above authors did not define a convective Mach number in the sense of 
(3), terms that contain the convective Mach number implicitly arise naturally in 
their analyses. The authors did appreciate their importance, since these terms 
characterize the nature of a disturbance as subsonic, sonic, or supersonic, but did not 
use them in their correlations. 

In  the incompressible turbulent case, the discovery of organized large structures 
and the realization that they are related to the instability of the shear layer led to 
the idea of a coordinate system moving with the structurcs. This corresponds to the 
description of the vortex sheet in a frame moving with the instability wave, as above. 
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FIGURE 12 Turbulent shear layer. ( a )  Stationary frame of reference, (0) convective frame of 
reference with sketches of streamlines after Coles (1981). 

Since large structures are also present in compressible turbulent shear layers, a frame 
of reference moving with U,. where U, is the velocity of the dominant waves and 
structures, appears to be the most suitable one in which to discuss the flow. 
Accordingly, we define the convective Mach numbers of a turbulent shear layer as 
follows : 

An idealized view of the large-scale structure, shown on figure 12(a), leads to 
Bogdanoffs (1983) formulation of a pressure boundary condition by which the 
convective U, is calculated. It is implicit in Cole's (1981) sketches of streamlines in 
the moving coordinates of the large structures, depicted on figure 12 ( b ) ,  and was first 
suggested to us by P. E. Dimotakis (private communication and 1986). In this 
coordinate system, there is a saddle point between the structures; it is a common 
stagnation point for both streams, thus implies equality of total pressures in the two 
streams in that systemn. For equal static pressures and assuming steady flow this 
results in 

For M,, and MC2 not very large and y1 and y2 not greatly different, (5) can be 
approximated by 
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FIGURE 13. Convective Mach number M ,  as a function of M ,  and M ,  for uniform total 
temperature. ( a )  h’,-K, combination ; ( b )  H e x ,  combination. 

For y1 = yz ,  U, can be expressed in the form 

which has the form of a speed-of-sound weighted average. It should be pointed out 
that  (7) and (8) are not restricted to compressible flow and are actually more accurate 
for incompressible flow. From (6) we find that Mcl and M C 2  are only 9 %  different 
when y1 = 3 and y, = 5 or the reverse. Figure 13 shows the dependence of M,, on 
M ,  and M ,  for two gas combinations. M C 1  has been calculated for uniform total 
temperature using (4) and ( 7 ) .  

We now hypothesize that the effects of compressibility, together with those of the 
other parameters, on the turbulent growth rate are more universally expressed in the 
form 
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The parameters enclosed in the parentheses of (9) uniquely define the free-stream 
conditions of the layer. The choice of MC1 or MCz as a compressibility-effect parameter 
is not critical since the relation between the two is known from (6) and the two are 
not very different in the present experiments. Here we choose to correlate against 
Met .  The values of Mcl in our experiments are shown on table 1. They are based on 
the free-stream conditions in the region where the turbulent growth rate is 
measured. 

7. The net effect of compressibility 
To illustrate a basic point, we first plot the experimental growth rates versus MC1 

without considering the effects of the other parameters formulated in (9). An 
inconclusive trend is obtained, depicted on figure 14, in which the growth rates 
increase a t  high M c l ,  contradicting the expectation supported by previous 
experimental works that compressibility has a stabilizing effect. Wc thus realize the 
need to uncouple the effects of MC1 from those of U2/U, and p2/p1. Since y changes 
only from 3 to g, we think that the effect of y2/y1 is not as significant here as those 
of the other parameters, although we cannot prove this rigorously. 

A straightforward way to estimate the net effect of MC1 is to compare the 
experimentally measured growth rates with those that would have occurred if the 
flow were incompressible and the velocity and density ratios were kept unchanged. 
More specifically, we form the ratio 

s’ f ( q > z 2 M c l )  uz Pz 

(10) - - - 

f ( - , - ,  ‘2 P2 M c1 = o )  ’ 
U, P1 

which will give the isolated effect of M C 1  a t  particular values of velocity ratio and 
density ratio. Subscript 0 denotes the incompressible value. This constitutes our 
generalization of the results obtained by Bogdanoff (1983). 

In order to normalize the growth rate according to  (lo),  we need an approximate 
model for the growth rate of the incompressible shear layer over a wide range of 
velocity and density ratios. I n  creating such a model, we assume that the main effect 
of the density ratio is to determine the convective velocity of the structures U, as 
given by (7). We conjecture that in a frame of reference moving with U, the growth 
rate is simply proportional to AU = U, - U,, thus the density ratio drops out of the 
picture in that frame. This reasoning leads to the simple expression 

AU s;, - - 
Uc 

For uniform density, from (7)  we have U, = a( Ul + U,) and (1  1 )  takes the familiar 
form 

(12) 
u, - U2 s;, - ___ 
U1+U,’  

For the visual thickness ( 1  1 )  becomes, using ( 7 ) ,  
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the constant 0.17 having been obtained experimentally by Brown & Roshko (1974). 
A generalized version of (13), obtained by a similar hypothesis, was first proposed by 
Brown (1974). Dimotakis (1986) used geometrical arguments to  derive the 
entrainment and growth of the turbulent region and found an expression for the 
growth rate similar to (13). 

Although the present derivation of (13) is not rigorous, its growth-rate prediction 
is in fairly good agreement with experimentally observed visual rates of subsonic 
shear layers, as shown in figure 15. To compare with the present results of Pitot- 
thickness growth we assume, as explained in $5, that %it,o = 0.8<i,,o. From (13) we 
then have 

[ l - $ ] [ l + ( g  
G,,, = 0.14 

The ratio %it/&, o, called here the normalized growth rate, is now formed according 
to (lo), where 66, is the experimentally obtained growth rate and is the 
incompressible Pitot growth rate, obtained from ( la) ,  at  the same values of UJU, 
and pz /p l  as the experimental one. The normalized growth rate is plotted versus 
Me, in figure 16. Its  values collapse roughly onto one curve, which suggests that the 
growth rate of a compressible shear layer might be approximately expressed in the 
form 

where C is a universal function valid over a wide range of U,/Ul and p2/p1.  We must 
be cautious about such a statement, however, in view of the limited number of 
measurements and the experimental error involved. The accuracy of the incom- 
pressible model of the shear layer must also be taken into consideration. 

What is remarkable about the curve of figure 16 is the drastic reduction of the 
normalized growth rate with increasing M c l ,  until Mel  reaches about 0.8. Beyond 
that point, it stays fairly constant, a t  a value approximately one fifth of the 
incompressible one. The normalized growth rate declines gradually with increasing 
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FIGURE 15. Model for visual growth of incompressible shear layer. Circle and square data points 
from Brown & Roshko (1974) for p2/p ,  = 7 and 3 respectively ; triangle from Dimotakis & Brown 
(1976) for p2/p1 = 1 .  

0 

M,,, starting at  subsonic values of M,,. This contrasts with some earlier views that 
the decline of growth rate would come abruptly, immediately after some relative 
Mach number becomes supersonic (Cosner 1976). The general features of this curve, 
particularly the flattening a t  large values of M,,, are similar to those of 
Gropengiesser 's curve (figure 1 1 ) . 

Assuming that (15) is approximately valid, a t  a given value of M,, the effects of 
density ratio and velocity ratio on the growth rate are similar to those in an 
incompressible shear layer, given by (14) : the growth rate is smaller when the heavier 
gas is on the high-speed side and greater when the heavier gas is on the low-speed 
side; the growth rate increases with decreasing velocity ratio, i.e. with increasing 
free-stream-velocity difference. 

The same type of correlation used with the present growth rates can be applied to 
the growth rates measured by previous investigators. The experimental data are 
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FIGURE 17. Kormalized vorticity-thickness growth versus M,,. Original data  obtained by other 
investigators as compiled in figure 1 of Bogdanoff (1983). 

taken from Maydew & Reed (19631, Sirieix & Solignac (1966), Birch & Eggers (1973), 
and Ikawa & Kubota (1975). These investigators made probe measurements of 
vorticity thickness (8,) in shear layers with M ,  = 0 and both gases air. We form the 
ratio &/JcY& using (13) with the constant changed to  0.085. That change stems from 
the fact that in incompressible homogeneous shear layers the vorticity thickness is 
about half of the visual thickness (Brown & Roshko 1974). There is no evidence, 
however, to suggest that  the same relation holds for layers with density difference. 
The result is depicted on figure 17 where we see that the normalized growth 
rate versus M,, exhibits the same qualitative behaviour as the current one. 
Quantitatively, the major difference is that the levelling off of the curve a t  M,, > 1 
occurs a t  a normalized growth rate around 0.4, as opposed to 0.2 in the present 
experiments. Also, the decrease in normalized growth rate starts a t  M c 1  = 0.4, rather 
than a t  M C 1  = 0.25 in our cases. The possible dependence of the ratio 8,d/8pplt on 
density ratio and Mach number may account for this difference. 

8. Discussion 
We hope that with this experimental study we have achieved two main goals: to 

produce useful data for scientific and engineering applications ; and to put the issue 
of compressibility in a perspective that captures the physics of the flow, thus 
enhances our understanding of its effects. The latter point is crucial because the effect 
of compressibility on the spreading rate of the turbulent shear layer is more subtle 
than the effects of velocity and density ratios, Still, we have difficulty in formulating 
a solid physical explanation as to why the growth rate behaves as it does without 
getting into the details of some complex analysis. Below, we offer some simple 
thoughts that may provide some preliminary insight into the behaviour of these 
complex flows. 

It is interesting that the growth-rate reduction starts a t  subsonic values of M C 1  and 
is evidently completed before M,, becomes supersonic (figure 15). This implies that 
compressibility takes effect before any shock or expansion waves appear in the flow, 
in the convective frame of reference. A similar trend is seen from the vortex-shcet 
calculations (figure 106). In the vortex sheet, the solution for the perturbation 
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FIGURE 18. Velocit,y and speed-of-sound profiles for illustration purposes. ( a )  Stationary frame 
of reference ; (6) convective frame of refei-ence, with disturbance characterization. 

potential shows its amplitude decaying exponentially with distance away from the 
sheet a t  a certain rate (the reader may wish to consult the relevant references listed 
in $6) .  That decay rate depends strongly on M,, : i t  is generally largest a t  MC1 = 0 and 
decreases with increasing M,,. A t  and beyond the critical value of MC1 (the value a t  
which the sheet is stabilized), thc decay rate is zero, meaning that the perturbation 
propagates unattenuated (radiates) away from the sheet. The decrease of 
amplification rate is thus associated with the disturbance penetrating further into 
the surrounding fluid. We propose to interpret that in the following fashion : as M C 1  
increases. a disturbance acts less in perturbing the flow in the vicinity of the sheet, 
and thus the sheet itself, and more in perturbing the flow away from the sheet. 
Conceptually, a similar mechanism may be responsible for the gradual growth 
reduction in the turbulent case. Morkovin (1987) studied the boundary-layer 
transition a t  supersonic speeds and noted that a t  supersonic convective Mach 
numbers energy is radiated away from the layer. He argued that this causes energy 
removal from potential pairing of spanwise vortices, impeding the process of 
amalgamation. Whether lack of amalgamation is responsible for our small growth 
rates is not clear, but it is reasonable to expect that  energy removal from the shear 
layer would slow down all interactions responsible for growth. Our present data 
suggest that this energy removal starts a t  subsonic Mrl and gets stronger as M,, 
increases, as reflected in our growth-rate-versus-Mc1 curve (figure 16). 

That there is a distinction between a vortex sheet and a shear layer of finite 
thickness seems elementary. I t  is in that  obvious difference that we see a fundamental 
feature of the finite-thickness shear layer that perhaps has not been fully appreciated 
yet. This feature is illustrated on figure 18, where distributions of velocity and speed 
of sound are depicted in stationary and convective frames of reference. In this 
example, MC1 and M C 2  are both supersonic. There is a portion of the flow near the 
centre of the layer where the local velocity, relative to the convective velocity, is 
subsonic. It is evident that the extent of the ‘subsonic’ sublayer will decrease with 
increasing M,, and MCp, but will never vanish. The fact that  in a compressible shear 
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layer there is always an imbedded subsonic region, thus a region potentially 
dominated by subsonic-type instabilities, is, in our view, significant. Viewed in the 
convective frame, this is a region where a disturbance can propagate upstream. Mack 
(1984) and Morkovin (1987) stress that  such upstream communication is essential for 
instability a t  supersonic speeds. Lees & Gold (1965), in their analysis of supersonic 
wakes, also realize the existence of an intrinsically subsonic region even though the 
disturbance is supersonic with respect to  the free stream. We believe that this feature 
is connected to the fact that the shear layer remains unstable no matter how large 
the Mach number. 

As noted early in $6, our analyses and discussions have so far been limited to two- 
dimensional disturbances. It is possible that oblique disturbances, i.e. disturbances 
that propagate a t  an angle p to the mean-flow direction, exist in compressible shear 
layers. In  the analyt,ical works of Lessen, Fox & Zien (1965) and of Gropengiesser it 
is found that the shear layer becomes more unstable as /l increases. Bogdanoff (1983) 
proposes that in the turbulent shear layer the effect of /l can be taken into account 
by defining an effective convective Mach number 

One can easily appreciate the profound changes that a large value of /3 may bring: 
a flow with Mcl > 1 may have Mcl,eff < 1.  Since the disturbance is now characterized 
by Mcl  ePf rather than by M C 1 ,  the entire flow is intrinsically subsonic, thus more 
unstable than one would predict using two-dimensional arguments. 

We speculate that the structures in our experiments are quasi-two-dimensional : 
the schlieren photographs, which give a spanwise-integrated view of the shear layer, 
reveal distinct structures. Since the shear layer has an aspect ratio of about 10, we 
think it is unlikely that such distinct images would appear unless these structures 
were organized spanwise. Admittedly, this is a weak argument that needs to be 
substantiated by experiments. We must also consider the possibility of a spanwise 
structure superimposed on the larger one, such as exists in subsonic shear layers, with 
primary structure that is coherent spanwise (Konrad 1976; Breidenthal1981; Bernal 

Finally, we would like to comment on the adverse streamwise pressure gradient 
occurring in the near field (the growth-rate measurements were done in the far field, 
as detailed in $3) present in our experiments. Although its dependence on the flow 
parameters is not well understood, we suspect that its severity increases with 
increasing trailing-edge Mach number. There may thus exist a practical limit as to 
how high a Mach number one can sustain in the far field, downstream of the pressure- 
gradient region. This would also translate into a limit for the convective Mach 
number. On the other hand, little research has been done on the dependence of the 
pressure gradient on channel geometry. It could possibly be counteracted, or a t  least 
delayed, by a test-section shape that is more sophisticated than the current one. 

1981). 
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